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Abstract 
 
From on-going practices of those who develop high 
performance software, there is an evident, pressing need 
for a highly focused effort to “reinvent” the explicit 
methodologies that support parallel programming. To 
enable a new methodology, orthogonalization of 
features and separation of concerns within the feature 
sets of existing parallel models (e.g., MPI-1, MPI-2, 
DRI, MPI/RT, BSP) are required from the viewpoint of 
creating notational instantiations sufficiently simple to 
achieve the requirements of actual parallel programs. 
Additionally, the new notational representations for 
expressing parallel programs must not be burdensome 
in terms of the accidental complexities for expressing an 
implementation (either in middleware or in compiler-
assisted syntactical form). In support of this vision, this 
paper identifies specifically the need for application of 
modern software engineering and design concepts to a 
refactoring of the Message Passing Interface’s set of 
capabilities. Concepts and methodologies from modern 
software engineering – Model Driven Architecture and 
Aspect-Oriented Software Design – inform this effort. 
 
1. Introduction 

This position paper asserts the need for a highly 
focused effort to “reinvent” how explicit parallel 
programming is accomplished practically. It takes the 
pragmatic view of applying modern software 
engineering and design concepts to a refactoring of the 
Message Passing Interface’s (MPI) [15] set of 
capabilities (rather than its API, per se). MPI has been 
widely adopted by developers of high-performance 
computing (HPC) systems [21], yet there is a pressing 
need to update the models, notations, and general 
methodology in order to ensure that MPI will continue 
to meet the demands and requirements of future HPC 
systems. This complements the many efforts in 
automatic parallelization/compilers/techniques. 

As observed at a recent CRA meeting [5], naively 
replacing a 10-year old object-based standard with yet 
another object-based standard would prove insufficient 
toward increasing programmer productivity. A minor 
incremental revision to HPC standards would also fail to 
raise the level of abstraction where possible, as 
consistent with high performance and scale. 

A reinvented methodology for parallel programming, 
as applied to high-performance computing, should 
embrace recent concepts from software engineering. Our 
vision of a new approach to HPC considers the adoption 
of the following four ideas from software engineering: 

 
1. The use of object-oriented (vs. object-based) 

notations, together with ideas from generative 
programming [6] and other post-object-oriented 
programming techniques need to be employed at 
a practical level. Aspect-oriented software 
development (AOSD) [13] can assist as a means 
both to transform implementations of the notation 
to meet programmer requirements, and to 
transform user programs [3] to achieve 
optimizations, fault enhancements, 
specializations, and/or instrumentation for 
performance understanding. 

2. Model-driven architecture (MDA) [8] and Model-
Integrated Computing [23] for the definition of 
the new prototype notations should be available 
to assist domain experts in the construction of 
HPC systems. Model-driven approaches, when 
combined with a domain-specific visual 
language, enable the specification of the essential 
properties of a system in a notation that is closer 
to the problem space, rather than the solution 
space [14]. From such models, the underlying 
representation of the solution for a specific 
platform can be generated. This has been shown 
to be helpful in isolating the accidental 
complexities of middleware [9], and the benefits 



www.manaraa.com

of the approach, as applied to HPC and parallel 
programming, should be studied. 

3. The use of design patterns for high-performance 
middleware (similar to descriptions in [20]) are 
needed to express domain-specific parallel data 
and computation kernels. Such patterns form the 
basis for a notation that is rich in asynchrony, 
supports planned transfers, emphasizes 
overlapping of computation, communication, and 
I/O, and leaves open the removal of abstraction 
barriers by compilers, translators, and 
middleware. The description and classification of 
patterns for HPC can provide a catalog of 
experiential reuse to assist new developers of 
HPC systems. 

4. Many of the more recent approaches to software 
engineering have been investigated and applied to 
modern languages like Java. Yet, many HPC and 
parallel programming solutions are coded in 
legacy languages like FORTRAN. As a bow to 
the particular needs of real HPC parallel 
programmers, there is a strong need to bring the 
advantages of new software engineering 
approaches into the purview of legacy languages. 
In particular, tool support for refactoring [7, 17, 
19] and aspect-orientation [13] is needed for 
legacy languages [11]. It is expected that with 
advances in aspect-oriented programming in the 
next five years, that FORTRAN will be 
supportable using program transformation 
approaches [3]. 

 
The next section will highlight some of the problems 

of current practice in HPC and parallel programming, 
particularly when MPI is used. Section 3 offers future 
directions for applying recent software engineering 
techniques to the identified problems. A summary of 
potential impact of the research directions proposed in 
this paper is provided in the conclusion. 
 
2. State of Current Practice 
 
HPC applications are rarely designed and implemented 
from scratch. Rather, they are developed most often by 
reengineering existing sequential applications using ad-
hoc approaches. The most common method used to 
develop HPC applications is a data parallel approach 
wherein a given dataset is distributed among multiple 
processors and each processor is assigned to work on 
that dataset while exchanging data through explicit 
message passing. With the data parallel approach, data 
distribution plays an important role in the overall 
performance of the application because it has impact on 
load balancing and message passing time. Often, data 
distribution is determined by the specific application and 
performed manually by the domain-expert using 

automated tools such as Metis [16], Chaco [12], and 
others that could be used with unstructured grids. 
 
Several key problems can be identified in the current 
practice of HPC software development: 
 
Ad hoc design decisions: Once data distribution is 
performed either manually or using automated tools, the 
next step is to establish communication between 
different processors. There are several communication 
options available (e.g., synchronous/ asynchronous, 
static/dynamic, point-to-point/collective), and there are 
trade-offs with each choice depending on the specific 
application. There are no well-established rules, 
guidelines or patterns; thus, users rely on ad-hoc 
approaches. Software engineering practices and 
principles are typically not used to evaluate the different 
design choices. Instead, users try out an option and, if it 
works with some reasonable improvement in 
performance, they will use that solution. Alternative 
choices are considered only when there is significant 
performance degradation. This typical ad-hoc scenario is 
predominated by the non-scientific approach of trial and 
error. 
 
Lack of support for adaptivity and evolution: HPC 
applications developed using MPI-1 used a fixed 
number of processors once an application started 
execution. Even though MPI-2 provides dynamic 
process management capabilities, many applications are 
currently not capable of exploiting this feature because 
the runtime systems do not provide the capability to add 
more resources once a job is scheduled for execution. 
 
Poor capabilities for fault-tolerance and recovery 
from exceptions: When an HPC application is running 
on multiple processors and there arises an error in one of 
the processes, the application aborts. The sudden 
termination of the process leaves the entire job hanging, 
mainly because of the lack of support for fault-tolerance 
in message-passing. An additional problem is caused 
because there is no state associated with message-
passing that could be saved and used to restart that 
process. Application level check pointing has to be 
built-in to the parallel programs to address faults and 
support restarts. Even though several parallel check 
pointing and fault-tolerance additions to MPI are 
underway, there is no clear programming paradigm to 
support the development of fault-aware adaptive parallel 
applications. 
 
3. An Outline for a New Approach 
 
A longstanding goal of software engineering is to 
construct software that is easily modified and extended. 
A desired result is to achieve modularization such that a 
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change in a design decision is isolated to one location 
[18]. As demands for HPC software increase, future 
requirements will necessitate new strategies to support 
the requisite adaptations across different software 
artifacts (e.g., models, source code, test cases, 
documentation) [2]. 
    Although MPI is a common, effective, and powerful 
programming model for multicomputers and clusters, it 
has been repeatedly “bashed” for its low-level 
abstractions that are too hard to use. It is the basis for 
“legacy parallel codes” of the 1990’s, whereas 
vectorized Cray FORTRAN produced the 1980’s 
equivalent. (Because MPI is the only parallel notation to 
work effectively at scale, its importance cannot be 
understated, vis a vis other projects, which have no 
significant “market penetration” as yet to compare with 
MPI at scale.) A systematic study by the first author of 
this paper and his students has revealed both obvious 
and subtle opportunities for enhancements to MPI [22]. 
However, retrofitting MPI incrementally is not 
interesting enough to constitute a key research 
contribution, and there may be insufficient demand 
among legacy code users either to exploit new features 
by manual recoding, nor to accept amendments to the 
MPI standard for the foreseeable future. This position 
paper emphasizes a refactoring of the MPI specification 
to demonstrate how to represent the features offered by 
MPI in a collective, non-blocking, object-oriented 
framework that emphasizes composition, and 
deemphasizes blocking, polling, single-threaded 
computation per process (or processor). 
    The refactoring of MPI is required to compare the 
features provided by existing standards MPI/RT 1.1, 
DRI 1.1, and other message passing systems. 
Experience and intuition about limitations justified in 
terms of use cases and scenarios will certainly motivate 
changes and consolidate functionality. Patterns not 
captured by MPI but emerging in it (like rings, data 
transpositions) will be utilized in the refactoring 
process. However, no new MPI implementation will be 
required. Rather, the goal is to gather semantic 
information on the major features and emerging/minable 
patterns of parallel programming that can be obtained 
from looking at MPI globally, because small local 
changes could drastically affect the global performance 
and behavior of HPC applications. The refactored MPI 
will emphasize more functions that do less, but compose 
better, and orthogonality and scalability that exceed MPI 
from a specification point of view, rather than a quality 
of implementation point of view (the best MPI 
implementation will nonetheless be less scalable than a 
comparable quality refactored MPI implementation for 
areas of specific improvement.) The remainder of this 
section will outline the software engineering principles 
that will aid in this refactoring. 

Model-driven Configuration: Refactoring and 
customization of MPI will be accomplished through the 
use of Model Integrated Computing (in particular, the 
GME meta-modeling tool [14]) to build a meta-model 
that captures the features of MPI (plus added features, 
minus removed features) and the particular usage 
scenario for a specific application. From the high-level 
models, the footprint of the MPI middleware will be 
minimized to provide concise, orthogonal, and complete 
features that superset what traditional MPI provides, 
while supporting specialization for semantically simpler 
cases that are not accessible in MPI because of the fat 
interfaces uses for the object-based API. The combined 
use of GME, the meta-model for MPI-1, and MPI-2, and 
the stub generation capabilities of this system will be 
used to restructure object-oriented APIs that could 
emerge from refactoring. Principles from generative 
programming [6], such as generation of code artifacts 
from high-level domain models, will be a key technique. 
The model-driven configuration will allow HPC 
developers to explore design alternatives more readily, 
compared to the ad-hoc approach that is now prevalent 
in the tools and methodologies available to developers 
of scientific applications. 
    Grid relevance will be built into the modeling 
notation by providing process management functionality 
that allows groups to be formed and reformed, and these 
groups to be used with sets of operations defined for 
them in an object-oriented manner. This kind of group 
instantiation will not be as “safe” and “opaque” as 
MPI’s communicator model, but will be much more 
flexible and scalable. They are therefore not equivalent 
to PVM’s open groups, but rather more like generalized 
MPI intercommunicators, including multipartitite 
relationships. State transition–based event notifications 
will be considered for groups as they transform. Lower 
safety in the communication model will be overcome by 
providing constraint satisfying compositions that help 
compose code safely in a generative programming style 
[6] (checking of the uses will be globalized either 
through a pre-compilation tool, or enforced through use 
of parallel design patterns, but low-level operations will 
be more optimistic to allow for higher performance 
when composed). 
   An example of the dynamic process management 
model that is needed, which is nearly impossible in 
MPI-2, is the merger of K groups of processes (whether 
independent singletons or groups). The new notation’s 
parallel programming model will emphasize ease of 
build up and build down of groups. However, it will also 
keep in mind the need to be able to use underlying 
scalable startup schemes, and not effectively defeat 
these. We have long argued about correct MPI-2 
programs for making even three groups merge, and so 
this has to be fixed in a next-generation system. 
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    Another aspect of the new modeling notation will be 
the ability to do reversibility of creating and destroying 
process groups. In MPI, it is not quite clear how to 
shrink the process management task, so effectively, 
dynamic process management is used in bi-partite 
settings, in settings where two groups merge and then 
stay merged for the rest of a computation, but not when 
where there is a lot of dynamicism. 
 
Improved Separation of Concerns in HPC: Much of 
the ad-hoc practice in HPC development stems from the 
inability to properly separate specific concerns. This 
severely hampers the ability to adapt and evolve 
software when changes are needed to the source code in 
order to address new requirements driven by a specific 
scientific domain. Aspect-Oriented Software 
Development (AOSD) provides a capability to 
modularize concerns that are crosscutting in nature [13]. 
With respect to the lack of flexibility for fault-tolerance, 
error recovery, and exception handling in HPC 
applications, an AOSD approach has the potential to 
offer significant benefit. With AOSD, the fault tolerance 
concerns can be weaved into the proper locations, 
eliminating the need for manual adaptation, which can 
often lead to an error-prone process. 
    This approach does not emphasize the “salvation” of 
all legacy MPI codes; however, support to transitioning 
the computational applications to the new notation is 
part of our future investigation, and experiential data 
about this transition will be part of the computer science 
outcomes of this work. Furthermore, a performance 
monitoring interface will be provided inside the new 
notation and its implementation prototypes so that a) 
profile guided optimization is possible, and b) hooks to 
program visualization and existing performance code is 
immediately possible. These will all be driven by 
aspects. In previous efforts, the authors have combined 
model-driven techniques with aspects in order to 
accomplish large-scale evolution of a legacy system by 
generating aspect-oriented transformations from high-
level models [10]. 
 
Componentization of HPC: The Common Component 
Architecture (CCA) [1] provides a standard comprising 
component framework to deal with the complexity of 
developing interdisciplinary high performance 
computing applications, while allowing integration of 
multiple components written in different programming 
languages using multiple paradigms. For example, a 
visualization module written in one language using a 
shared memory paradigm can be integrated with a 
computational application that may be written in another 
language that uses MPI for interprocessor 
communication by a collective port. It is interesting to 
study the implications of CCA to Grid applications in 

order to integrate an even more diverse range of 
applications and tools. 
   CCA has been widely used in “plug-and-play” type 
application environments such as climate, weather, and 
ocean modeling simulations [1]. In this model, 
components are units of software functionality that can 
be plugged together to form applications. The 
components interact via interfaces, known as ports. The 
components are enclosed in a framework that provides 
ports for components to interface, and a set of standard 
services available to all components. 
    The types of components implied by CCA are 
relatively coarse grain, and therefore appear relevant to 
grid computing, as well as process-level computing. 
Components of finer granularity, which compose at light 
weight at compile time are also of interest. Importantly, 
this effort will avoid making least common denominator 
decisions driven by language particulars, as MPI-1 was 
forced to do with supporting Fortran-77 and C 
simultaneously. (Some of these actually impact the 
scalability of the MPI notation, which limits MPI’s 
usefulness in describing communication in certain 
irregular parallel codes). Language-independent aspect 
weaving and transformation tools can be utilized to 
assist in such composition [3, 4, 11]. Model-driven 
techniques can also be integrated with a CCA approach 
such that a domain-specific modeling environment is 
used to connect and generate CCA-based applications. 
    The combined use of aspect-oriented programming, 
model driven architecture, and a more sensible, 
orthogonal design for non-blocking collective operations 
suitable either for data parallel or irregular programs 
will make next-generation parallel programming far 
better than MPI. 
 
4. Conclusion 
As asserted in this position paper, improved 
methodologies and respective tool support are needed to 
better enable developers of HPC systems in dealing with 
the increasing complexities of parallel programming. 
Our vision is to integrate modern software engineering 
techniques into the practice of HPC development. The 
outcome would offer designs and prototypes of a new 
parallel programming notation that remains explicit in 
the sense that parallelism is not automatically obtained, 
derived, or inferred. Instead, the notation will make it 
much easier to express certain patterns of parallel 
programs, compose these, make them work correctly, 
and study/refine performance. Our work in this area is 
just beginning, but we are convinced that the topics 
described in this paper would generate fruitful 
discussion at the workshop. 
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