
www.manaraa.com

Reinventing Explicit Parallel Programming for Improved Engineering
of High Performance Computing Software

Anthony Skjellum, Purushotham Bangalore, Jeff Gray, and Barrett Bryant

University of Alabama at Birmingham

Department of Computer and Information Sciences
Birmingham, Alabama 35294-1170, U.S.A.

{tony, puri, gray, bryant} @ cis.uab.edu
http://www.cis.uab.edu

Abstract

From on-going practices of those who develop high
performance software, there is an evident, pressing need
for a highly focused effort to “reinvent” the explicit
methodologies that support parallel programming. To
enable a new methodology, orthogonalization of
features and separation of concerns within the feature
sets of existing parallel models (e.g., MPI-1, MPI-2,
DRI, MPI/RT, BSP) are required from the viewpoint of
creating notational instantiations sufficiently simple to
achieve the requirements of actual parallel programs.
Additionally, the new notational representations for
expressing parallel programs must not be burdensome
in terms of the accidental complexities for expressing an
implementation (either in middleware or in compiler-
assisted syntactical form). In support of this vision, this
paper identifies specifically the need for application of
modern software engineering and design concepts to a
refactoring of the Message Passing Interface’s set of
capabilities. Concepts and methodologies from modern
software engineering – Model Driven Architecture and
Aspect-Oriented Software Design – inform this effort.

1. Introduction

This position paper asserts the need for a highly
focused effort to “reinvent” how explicit parallel
programming is accomplished practically. It takes the
pragmatic view of applying modern software
engineering and design concepts to a refactoring of the
Message Passing Interface’s (MPI) [15] set of
capabilities (rather than its API, per se). MPI has been
widely adopted by developers of high-performance
computing (HPC) systems [21], yet there is a pressing
need to update the models, notations, and general
methodology in order to ensure that MPI will continue
to meet the demands and requirements of future HPC
systems. This complements the many efforts in
automatic parallelization/compilers/techniques.

As observed at a recent CRA meeting [5], naively
replacing a 10-year old object-based standard with yet
another object-based standard would prove insufficient
toward increasing programmer productivity. A minor
incremental revision to HPC standards would also fail to
raise the level of abstraction where possible, as
consistent with high performance and scale.

A reinvented methodology for parallel programming,
as applied to high-performance computing, should
embrace recent concepts from software engineering. Our
vision of a new approach to HPC considers the adoption
of the following four ideas from software engineering:

1. The use of object-oriented (vs. object-based)

notations, together with ideas from generative
programming [6] and other post-object-oriented
programming techniques need to be employed at
a practical level. Aspect-oriented software
development (AOSD) [13] can assist as a means
both to transform implementations of the notation
to meet programmer requirements, and to
transform user programs [3] to achieve
optimizations, fault enhancements,
specializations, and/or instrumentation for
performance understanding.

2. Model-driven architecture (MDA) [8] and Model-
Integrated Computing [23] for the definition of
the new prototype notations should be available
to assist domain experts in the construction of
HPC systems. Model-driven approaches, when
combined with a domain-specific visual
language, enable the specification of the essential
properties of a system in a notation that is closer
to the problem space, rather than the solution
space [14]. From such models, the underlying
representation of the solution for a specific
platform can be generated. This has been shown
to be helpful in isolating the accidental
complexities of middleware [9], and the benefits

www.manaraa.com

of the approach, as applied to HPC and parallel
programming, should be studied.

3. The use of design patterns for high-performance
middleware (similar to descriptions in [20]) are
needed to express domain-specific parallel data
and computation kernels. Such patterns form the
basis for a notation that is rich in asynchrony,
supports planned transfers, emphasizes
overlapping of computation, communication, and
I/O, and leaves open the removal of abstraction
barriers by compilers, translators, and
middleware. The description and classification of
patterns for HPC can provide a catalog of
experiential reuse to assist new developers of
HPC systems.

4. Many of the more recent approaches to software
engineering have been investigated and applied to
modern languages like Java. Yet, many HPC and
parallel programming solutions are coded in
legacy languages like FORTRAN. As a bow to
the particular needs of real HPC parallel
programmers, there is a strong need to bring the
advantages of new software engineering
approaches into the purview of legacy languages.
In particular, tool support for refactoring [7, 17,
19] and aspect-orientation [13] is needed for
legacy languages [11]. It is expected that with
advances in aspect-oriented programming in the
next five years, that FORTRAN will be
supportable using program transformation
approaches [3].

The next section will highlight some of the problems

of current practice in HPC and parallel programming,
particularly when MPI is used. Section 3 offers future
directions for applying recent software engineering
techniques to the identified problems. A summary of
potential impact of the research directions proposed in
this paper is provided in the conclusion.

2. State of Current Practice

HPC applications are rarely designed and implemented
from scratch. Rather, they are developed most often by
reengineering existing sequential applications using ad-
hoc approaches. The most common method used to
develop HPC applications is a data parallel approach
wherein a given dataset is distributed among multiple
processors and each processor is assigned to work on
that dataset while exchanging data through explicit
message passing. With the data parallel approach, data
distribution plays an important role in the overall
performance of the application because it has impact on
load balancing and message passing time. Often, data
distribution is determined by the specific application and
performed manually by the domain-expert using

automated tools such as Metis [16], Chaco [12], and
others that could be used with unstructured grids.

Several key problems can be identified in the current
practice of HPC software development:

Ad hoc design decisions: Once data distribution is
performed either manually or using automated tools, the
next step is to establish communication between
different processors. There are several communication
options available (e.g., synchronous/ asynchronous,
static/dynamic, point-to-point/collective), and there are
trade-offs with each choice depending on the specific
application. There are no well-established rules,
guidelines or patterns; thus, users rely on ad-hoc
approaches. Software engineering practices and
principles are typically not used to evaluate the different
design choices. Instead, users try out an option and, if it
works with some reasonable improvement in
performance, they will use that solution. Alternative
choices are considered only when there is significant
performance degradation. This typical ad-hoc scenario is
predominated by the non-scientific approach of trial and
error.

Lack of support for adaptivity and evolution: HPC
applications developed using MPI-1 used a fixed
number of processors once an application started
execution. Even though MPI-2 provides dynamic
process management capabilities, many applications are
currently not capable of exploiting this feature because
the runtime systems do not provide the capability to add
more resources once a job is scheduled for execution.

Poor capabilities for fault-tolerance and recovery
from exceptions: When an HPC application is running
on multiple processors and there arises an error in one of
the processes, the application aborts. The sudden
termination of the process leaves the entire job hanging,
mainly because of the lack of support for fault-tolerance
in message-passing. An additional problem is caused
because there is no state associated with message-
passing that could be saved and used to restart that
process. Application level check pointing has to be
built-in to the parallel programs to address faults and
support restarts. Even though several parallel check
pointing and fault-tolerance additions to MPI are
underway, there is no clear programming paradigm to
support the development of fault-aware adaptive parallel
applications.

3. An Outline for a New Approach

A longstanding goal of software engineering is to
construct software that is easily modified and extended.
A desired result is to achieve modularization such that a

www.manaraa.com

change in a design decision is isolated to one location
[18]. As demands for HPC software increase, future
requirements will necessitate new strategies to support
the requisite adaptations across different software
artifacts (e.g., models, source code, test cases,
documentation) [2].
 Although MPI is a common, effective, and powerful
programming model for multicomputers and clusters, it
has been repeatedly “bashed” for its low-level
abstractions that are too hard to use. It is the basis for
“legacy parallel codes” of the 1990’s, whereas
vectorized Cray FORTRAN produced the 1980’s
equivalent. (Because MPI is the only parallel notation to
work effectively at scale, its importance cannot be
understated, vis a vis other projects, which have no
significant “market penetration” as yet to compare with
MPI at scale.) A systematic study by the first author of
this paper and his students has revealed both obvious
and subtle opportunities for enhancements to MPI [22].
However, retrofitting MPI incrementally is not
interesting enough to constitute a key research
contribution, and there may be insufficient demand
among legacy code users either to exploit new features
by manual recoding, nor to accept amendments to the
MPI standard for the foreseeable future. This position
paper emphasizes a refactoring of the MPI specification
to demonstrate how to represent the features offered by
MPI in a collective, non-blocking, object-oriented
framework that emphasizes composition, and
deemphasizes blocking, polling, single-threaded
computation per process (or processor).
 The refactoring of MPI is required to compare the
features provided by existing standards MPI/RT 1.1,
DRI 1.1, and other message passing systems.
Experience and intuition about limitations justified in
terms of use cases and scenarios will certainly motivate
changes and consolidate functionality. Patterns not
captured by MPI but emerging in it (like rings, data
transpositions) will be utilized in the refactoring
process. However, no new MPI implementation will be
required. Rather, the goal is to gather semantic
information on the major features and emerging/minable
patterns of parallel programming that can be obtained
from looking at MPI globally, because small local
changes could drastically affect the global performance
and behavior of HPC applications. The refactored MPI
will emphasize more functions that do less, but compose
better, and orthogonality and scalability that exceed MPI
from a specification point of view, rather than a quality
of implementation point of view (the best MPI
implementation will nonetheless be less scalable than a
comparable quality refactored MPI implementation for
areas of specific improvement.) The remainder of this
section will outline the software engineering principles
that will aid in this refactoring.

Model-driven Configuration: Refactoring and
customization of MPI will be accomplished through the
use of Model Integrated Computing (in particular, the
GME meta-modeling tool [14]) to build a meta-model
that captures the features of MPI (plus added features,
minus removed features) and the particular usage
scenario for a specific application. From the high-level
models, the footprint of the MPI middleware will be
minimized to provide concise, orthogonal, and complete
features that superset what traditional MPI provides,
while supporting specialization for semantically simpler
cases that are not accessible in MPI because of the fat
interfaces uses for the object-based API. The combined
use of GME, the meta-model for MPI-1, and MPI-2, and
the stub generation capabilities of this system will be
used to restructure object-oriented APIs that could
emerge from refactoring. Principles from generative
programming [6], such as generation of code artifacts
from high-level domain models, will be a key technique.
The model-driven configuration will allow HPC
developers to explore design alternatives more readily,
compared to the ad-hoc approach that is now prevalent
in the tools and methodologies available to developers
of scientific applications.
 Grid relevance will be built into the modeling
notation by providing process management functionality
that allows groups to be formed and reformed, and these
groups to be used with sets of operations defined for
them in an object-oriented manner. This kind of group
instantiation will not be as “safe” and “opaque” as
MPI’s communicator model, but will be much more
flexible and scalable. They are therefore not equivalent
to PVM’s open groups, but rather more like generalized
MPI intercommunicators, including multipartitite
relationships. State transition–based event notifications
will be considered for groups as they transform. Lower
safety in the communication model will be overcome by
providing constraint satisfying compositions that help
compose code safely in a generative programming style
[6] (checking of the uses will be globalized either
through a pre-compilation tool, or enforced through use
of parallel design patterns, but low-level operations will
be more optimistic to allow for higher performance
when composed).
 An example of the dynamic process management
model that is needed, which is nearly impossible in
MPI-2, is the merger of K groups of processes (whether
independent singletons or groups). The new notation’s
parallel programming model will emphasize ease of
build up and build down of groups. However, it will also
keep in mind the need to be able to use underlying
scalable startup schemes, and not effectively defeat
these. We have long argued about correct MPI-2
programs for making even three groups merge, and so
this has to be fixed in a next-generation system.

www.manaraa.com

 Another aspect of the new modeling notation will be
the ability to do reversibility of creating and destroying
process groups. In MPI, it is not quite clear how to
shrink the process management task, so effectively,
dynamic process management is used in bi-partite
settings, in settings where two groups merge and then
stay merged for the rest of a computation, but not when
where there is a lot of dynamicism.

Improved Separation of Concerns in HPC: Much of
the ad-hoc practice in HPC development stems from the
inability to properly separate specific concerns. This
severely hampers the ability to adapt and evolve
software when changes are needed to the source code in
order to address new requirements driven by a specific
scientific domain. Aspect-Oriented Software
Development (AOSD) provides a capability to
modularize concerns that are crosscutting in nature [13].
With respect to the lack of flexibility for fault-tolerance,
error recovery, and exception handling in HPC
applications, an AOSD approach has the potential to
offer significant benefit. With AOSD, the fault tolerance
concerns can be weaved into the proper locations,
eliminating the need for manual adaptation, which can
often lead to an error-prone process.
 This approach does not emphasize the “salvation” of
all legacy MPI codes; however, support to transitioning
the computational applications to the new notation is
part of our future investigation, and experiential data
about this transition will be part of the computer science
outcomes of this work. Furthermore, a performance
monitoring interface will be provided inside the new
notation and its implementation prototypes so that a)
profile guided optimization is possible, and b) hooks to
program visualization and existing performance code is
immediately possible. These will all be driven by
aspects. In previous efforts, the authors have combined
model-driven techniques with aspects in order to
accomplish large-scale evolution of a legacy system by
generating aspect-oriented transformations from high-
level models [10].

Componentization of HPC: The Common Component
Architecture (CCA) [1] provides a standard comprising
component framework to deal with the complexity of
developing interdisciplinary high performance
computing applications, while allowing integration of
multiple components written in different programming
languages using multiple paradigms. For example, a
visualization module written in one language using a
shared memory paradigm can be integrated with a
computational application that may be written in another
language that uses MPI for interprocessor
communication by a collective port. It is interesting to
study the implications of CCA to Grid applications in

order to integrate an even more diverse range of
applications and tools.
 CCA has been widely used in “plug-and-play” type
application environments such as climate, weather, and
ocean modeling simulations [1]. In this model,
components are units of software functionality that can
be plugged together to form applications. The
components interact via interfaces, known as ports. The
components are enclosed in a framework that provides
ports for components to interface, and a set of standard
services available to all components.
 The types of components implied by CCA are
relatively coarse grain, and therefore appear relevant to
grid computing, as well as process-level computing.
Components of finer granularity, which compose at light
weight at compile time are also of interest. Importantly,
this effort will avoid making least common denominator
decisions driven by language particulars, as MPI-1 was
forced to do with supporting Fortran-77 and C
simultaneously. (Some of these actually impact the
scalability of the MPI notation, which limits MPI’s
usefulness in describing communication in certain
irregular parallel codes). Language-independent aspect
weaving and transformation tools can be utilized to
assist in such composition [3, 4, 11]. Model-driven
techniques can also be integrated with a CCA approach
such that a domain-specific modeling environment is
used to connect and generate CCA-based applications.
 The combined use of aspect-oriented programming,
model driven architecture, and a more sensible,
orthogonal design for non-blocking collective operations
suitable either for data parallel or irregular programs
will make next-generation parallel programming far
better than MPI.

4. Conclusion
As asserted in this position paper, improved
methodologies and respective tool support are needed to
better enable developers of HPC systems in dealing with
the increasing complexities of parallel programming.
Our vision is to integrate modern software engineering
techniques into the practice of HPC development. The
outcome would offer designs and prototypes of a new
parallel programming notation that remains explicit in
the sense that parallelism is not automatically obtained,
derived, or inferred. Instead, the notation will make it
much easier to express certain patterns of parallel
programs, compose these, make them work correctly,
and study/refine performance. Our work in this area is
just beginning, but we are convinced that the topics
described in this paper would generate fruitful
discussion at the workshop.

www.manaraa.com

References

1. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,

L. McInnes, S. Parker, and B. Smolinski, “Toward a
Common Component Architecture for High-Performance
Scientific Computing”, in Proceedings of the High-
Performance Distributed Computing Conference, August
1999, pp. 115-124.

2. D. Batory, J.N. Sarvela, and A. Rauschmeyer, “Scaling
Step-Wise Refinement,” International Conference on
Software Engineering, Portland, Oregon, May 2003, pp.
187-197.

3. I. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program
Transformation for Practical Scalable Software
Evolution,” International Conference on Software
Engineering (ICSE), Edinburgh, Scotland, May 2004.

4. F. Cao, B. Bryant, R. Raje, M. Auguston, A. Olson, and
C. Burt, “A Component Assembly Approach Based On
Aspect-Oriented Generative Domain Modeling,” to
appear in Electronic Notes in Theoretical Computer
Science, 2004.

5. Computing Research Association, “Report of Workshop
on The Roadmap for the Revitalization of High-End
Computing,” organized by Computing Research
Association, Edited by Daniel A. Reed, Washington D.C.,
June 16-18, 2003.

6. K. Czarnecki and U. Eisenecker, Generative
Programming: Methods, Tools, and Applications,
Addison Wesley, 2000.

7. M. Fowler, Refactoring: Improving the Design of
Existing Programs, Addison-Wesley, 1999.

8. D. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, Wiley Publishing, 2003.

9. A. Gokhale, D. Schmidt, B. Natarajan, J. Gray, and N.
Wang, “Model-Driven Middleware,” in Middleware for
Communications, (Qusay Mahmoud, ed.), John Wiley &
Sons, 2003.

10. J. Gray, J. Sztipanovits, D. C. Schmidt, T. Bapty, S.
Neema, and A. Gokhale, “Two-level Aspect Weaving to
Support Evolution of Model-Based Software,” in Aspect-
Oriented Software Development, (Robert Filman, Tzilla
Elrad, Mehmet Aksit, and Siobhán Clarke, eds.),
Addison-Wesley, 2004, Chapter 29 .

11. J. Gray and S. Roychoudhury, “A Technique for
Constructing Aspect Weavers Using a Program
Transformation System,” International Conference on
Aspect-Oriented Software Development (AOSD),
Lancaster, UK, March 22-27, 2004, pp. 36-45.

12. Bruce Hendrickson and Robert Leland, “An Improved
Spectral Graph Partitioning Algorithm for Mapping
Parallel Computations,” SIAM Journal on Scientific and
Statistical Computing, 16(2) – 1995, pp. 452-469.

13. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J. Loingtier, and J. Irwin, “Aspect-
Oriented Programming,” European Conference on
Object-Oriented Programming (ECOOP), LNCS 1241,
Springer-Verlag, Jyväskylä, Finland, June 1997, pp. 220-
242.

14. Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G.
Nordstrom, J. Sprinkle, and G. Karsai, “Composing
Domain-Specific Design Environments,” IEEE
Computer, November 2001, pp. 44-51.

15. Message Passing Interface Forum, “MPI2: A Message-
Passing Interface Standard,” International Journal of
Supercomputer Applications and High Performance
Computing, Special Issue, 12(1/2), pp. 1-299, 1998
[Specifically: Chapter 7, pp. 139-157]

16. METIS. http://www-users.cs.umn.edu/~karypis/metis/
17. W.F. Opdyke, Refactoring: A Program Restructuring Aid

in Designing Object-Oriented Application Frameworks,
Ph.D. Thesis, University of Illinois at Urbana-
Champaign, 1992,
http://citeseer.nj.nec.com/opdyke92refactoring.html

18. D. Parnas, “On the Criteria To Be Used in Decomposing
Systems into Modules,” Communications of the ACM,
December 1972, pp. 1053-1058.

19. D.B. Roberts, Practical Analysis for Refactoring, Ph.D.
Thesis, University of Illinois at Urbana-Champaign,
1999. (http://st-www.cs.uiuc.edu/~droberts/thesis.pdf)

20. D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, John Wiley and
Sons, 2000.

21. A. Skjellum, E. Lusk, W. Gropp, “Early Applications in
the Message-Passing Interface,” Invited Paper,
International Journal of Supercomputing Applications,
June 1995.

22. Anthony Skjellum, “High Performance MPI: Extending
the Message Passing Interface for Higher Performance
and Higher Predictability,” International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA'98), Las Vegas, Nevada, July 1998.

23. J. Sztipanovits and G. Karsai, “Model-Integrated
Computing,” IEEE Computer, April 1997, pp. 10-12.

